

Presentation by Marla C. Downing

Acknowledgements

- Vernon L. Thomas Information Analyst/Master of the Universe, INTECS
- Robin M. Reich Associate Professor, Colorado State University
- Suzanne M. Joy Landscape Ecologist, USDA Forest Service, Rocky Mountain Research Station
- Jennifer Juzwik Pathologist, USDA Forest Service, North Central Research Station
- Kathleen T. Ward Forest Technician, USDA Forest Service, North Central Research Station
- Kathryn W. Kromroy Pathologist, USDA Forest Service, North Central Research Station
- Paul Castillo Biological Technician, USDA Forest Service, North Central Research Station
- Andy Mason Director, USDA Forest Service, Forest Health Technology Enterprise Team

What is our objective?

To spatially model some continuous or discrete variable (e.g. oak condition) in order to **understand** how it is distributed or changes across the landscape.

What are we trying to understand?

Is the variable of interest distributed randomly across a region, spatially independent, or does it change in a predictable manner based on another variable or collection of variables such as elevation, soils, or Landsat TM bands.

STEP 1 Dependent Variable: The Sample Point Theme

Each point represents a sample location that becomes the dependent variable in the spatial analysis.

STEP 1 Dependent Variable: The Sample Point Theme

STEP 2 Independent Variables: Creating Data Themes

STEP 2

Examples of Independent Variable GRID DataThemes

STEP 1 Dependent Variable: The Sample Point Theme

STEP 2 Independent Variables: Creating Data Themes

STEP 3 Create Geo-Spatial Model Spread Sheet

STEP 1 Dependent Variable: The Sample Point Theme

STEP 2 Independent Variables: Creating Data Themes

STEP 3 Create Geo-Spatial Model Spread Sheet

STEP 4 Spatial Analysis Using SPLUS

STEP 4

Import the Model Spread Sheet Into SPLUS

STEP 1 Dependent Variable: The Sample Point Theme

STEP 2 Independent Variables: Creating Data Themes

STEP 3 Create Geo-Spatial Model Spread Sheet

STEP 4 Spatial Analysis Using SPLUS

STEP 5 Create Dependent Variable TREND surface

- This methodology uses multiple data types to classify the dependent variable of interest
- Not reliant on a single data source, such as Landsat data, which only uses spectral information
- By using more than one independent variable the overall accuracy of the classification may increase.